Turing machine
From Wikipedia, the free encyclopedia
This article is about the symbol manipulator. For the deciphering machine, see Bombe. For the test of artificial intelligence, see Turing test. For the instrumental rock band, see Turing Machine (band).
A Turing machine is an abstract machine[1] that manipulates symbols on a strip of tape according to a table of rules; to be more exact, it is a mathematical model that defines such a device.[2] Despite the model's simplicity, given any computer algorithm, a Turing machine can be constructed that is capable of simulating that algorithm's logic.[3]
The machine operates on an infinite[4] memory tape divided into cells.[5] The machine positions its head over a cell and "reads" (scans[6]) the symbol there. Then per the symbol and its present place in a finite table[7] of user-specified instructions the machine (i) writes a symbol (e.g. a digit or a letter from a finite alphabet) in the cell (some models allowing symbol erasure[8] and/or no writing), then (ii) either moves the tape one cell left or right (some models allow no motion, some models move the head),[9] then (iii) (as determined by the observed symbol and the machine's place in the table) either proceeds to a subsequent instruction or halts[10] the computation.
The Turing machine was invented in 1936 by Alan Turing,[11][12] who called it an a-machine (automatic machine).[13] With this model Turing was able to answer two questions in the negative: (1) Does a machine exist that can determine whether any arbitrary machine on its tape is "circular" (e.g. freezes, or fails to continue its computational task); similarly, (2) does a machine exist that can determine whether any arbitrary machine on its tape ever prints a given symbol.[14] Thus by providing a mathematical description of a very simple device capable of arbitrary computations, he was able to prove properties of computation in general - and in particular, the uncomputability of the Hilbert Entscheidungsproblem ("decision problem").[15]
Thus, Turing machines prove fundamental limitations on the power of mechanical computation.[16] While they can express arbitrary computations, their minimalistic design makes them unsuitable for computation in practice: actual computers are based on different designs that, unlike Turing machines, use random access memory.
Turing completeness is the ability for a system of instructions to simulate a Turing machine. A programming language that is Turing complete is theoretically capable of expressing all tasks accomplishable by computers; nearly all programming languages are Turing complete.
Contents
[hide]- 1Overview
- 2Informal description
- 3Formal definition
- 4Additional details required to visualize or implement Turing machines
- 5Models equivalent to the Turing machine model
- 6Choice c-machines, Oracle o-machines
- 7Universal Turing machines
- 8Comparison with real machines
- 9History
- 9.1Historical background: computational machinery
- 9.2The Entscheidungsproblem (the "decision problem"): Hilbert's tenth question of 1900
- 9.3Alan Turing's a- (automatic-)machine
- 9.41937–1970: The "digital computer", the birth of "computer science"
- 9.51970–present: the Turing machine as a model of computation
- 10See also
- 11Notes
- 12References
- 13External links
Overview[edit]
A Turing machine is a general example of a CPU that controls all data manipulation done by a computer, with the canonical machine using sequential memory to store data. More specifically, it is a machine (automaton) capable of enumerating some arbitrary subset of valid strings of an alphabet; these strings are part of a recursively enumerable set.
Assuming a black box, the Turing machine cannot know whether it will eventually enumerate any one specific string of the subset with a given program. This is due to the fact that the halting problem is unsolvable, which has major implications for the theoretical limits of computing.
The Turing machine is capable of processing an unrestricted grammar, which further implies that it is capable of robustly evaluating first-order logic in an infinite number of ways. This is famously demonstrated through lambda calculus.
A Turing machine that is able to simulate any other Turing machine is called a universal Turing machine (UTM, or simply a universal machine). A more mathematically oriented definition with a similar "universal" nature was introduced by Alonzo Church, whose work on lambda calculus intertwined with Turing's in a formal theory of computation known as the Church–Turing thesis. The thesis states that Turing machines indeed capture the informal notion of effective methods in logic and mathematics, and provide a precise definition of an algorithm or "mechanical procedure". Studying their abstract properties yields many insights into computer science and complexity theory.
Physical description[edit]
In his 1948 essay, "Intelligent Machinery", Turing wrote that his machine consisted of:
- ...an unlimited memory capacity obtained in the form of an infinite tape marked out into squares, on each of which a symbol could be printed. At any moment there is one symbol in the machine; it is called the scanned symbol. The machine can alter the scanned symbol, and its behavior is in part determined by that symbol, but the symbols on the tape elsewhere do not affect the behavior of the machine. However, the tape can be moved back and forth through the machine, this being one of the elementary operations of the machine. Any symbol on the tape may therefore eventually have an innings.[17] (Turing 1948, p. 3[18])
Informal description[edit]
For visualizations of Turing machines, see Turing machine gallery.
The Turing machine mathematically models a machine that mechanically operates on a tape. On this tape are symbols, which the machine can read and write, one at a time, using a tape head. Operation is fully determined by a finite set of elementary instructions such as "in state 42, if the symbol seen is 0, write a 1; if the symbol seen is 1, change into state 17; in state 17, if the symbol seen is 0, write a 1 and change to state 6;" etc. In the original article ("On computable numbers, with an application to theEntscheidungsproblem", see also references below), Turing imagines not a mechanism, but a person whom he calls the "computer", who executes these deterministic mechanical rules slavishly (or as Turing puts it, "in a desultory manner").
More precisely, a Turing machine consists of:
- A tape divided into cells, one next to the other. Each cell contains a symbol from some finite alphabet. The alphabet contains a special blank symbol (here written as '0') and one or more other symbols. The tape is assumed to be arbitrarily extendable to the left and to the right, i.e., the Turing machine is always supplied with as much tape as it needs for its computation. Cells that have not been written before are assumed to be filled with the blank symbol. In some models the tape has a left end marked with a special symbol; the tape extends or is indefinitely extensible to the right.
- A head that can read and write symbols on the tape and move the tape left and right one (and only one) cell at a time. In some models the head moves and the tape is stationary.
- A state register that stores the state of the Turing machine, one of finitely many. Among these is the special start state with which the state register is initialized. These states, writes Turing, replace the "state of mind" a person performing computations would ordinarily be in.
- A finite table[19] of instructions[20] that, given the state(qi) the machine is currently in and the symbol(aj) it is reading on the tape (symbol currently under the head), tells the machine to do the following in sequence (for the 5-tuple models):
- Either erase or write a symbol (replacing aj with aj1), and then
- Move the head (which is described by dk and can have values: 'L' for one step left or 'R' for one step right or 'N' for staying in the same place), and then
- Assume the same or a new state as prescribed (go to state qi1).
Note that every part of the machine (i.e. its state, symbol-collections, and used tape at any given time) and its actions (such as printing, erasing and tape motion) is finite, discreteand distinguishable; it is the unlimited amount of tape and runtime that gives it an unbounded amount of storage space.
Formal definition[edit]
Following Hopcroft and Ullman (1979, p. 148), a (one-tape) Turing machine can be formally defined as a 7-tuple where
- is a finite, non-empty set of states
- is a finite, non-empty set of tape alphabet symbols
- is the blank symbol (the only symbol allowed to occur on the tape infinitely often at any step during the computation)
- is the set of input symbols
- is a partial function called the transition function, where L is left shift, R is right shift. (A relatively uncommon variant allows "no shift", say N, as a third element of the latter set.) If is not defined on the current state and the current tape symbol, then the machine halts.[21]
- is the initial state
- is the set of final or accepting states. The initial tape contents is said to be accepted by if it eventually halts in a state from .
Anything that operates according to these specifications is a Turing machine.
The 7-tuple for the 3-state busy beaver looks like this (see more about this busy beaver at Turing machine examples):
- ("blank")
- (the initial state)
- see state-table below
Initially all tape cells are marked with .
Tape symbol | Current state A | Current state B | Current state C | ||||||
---|---|---|---|---|---|---|---|---|---|
Write symbol | Move tape | Next state | Write symbol | Move tape | Next state | Write symbol | Move tape | Next state | |
0 | 1 | R | B | 1 | L | A | 1 | L | B |
1 | 1 | L | C | 1 | R | B | 1 | R | HALT |
Additional details required to visualize or implement Turing machines[edit]
In the words of van Emde Boas (1990), p. 6: "The set-theoretical object [his formal seven-tuple description similar to the above] provides only partial information on how the machine will behave and what its computations will look like."
For instance,
- There will need to be many decisions on what the symbols actually look like, and a failproof way of reading and writing symbols indefinitely.
- The shift left and shift right operations may shift the tape head across the tape, but when actually building a Turing machine it is more practical to make the tape slide back and forth under the head instead.
- The tape can be finite, and automatically extended with blanks as needed (which is closest to the mathematical definition), but it is more common to think of it as stretching infinitely at both ends and being pre-filled with blanks except on the explicitly given finite fragment the tape head is on. (This is, of course, not implementable in practice.) The tape cannot be fixed in length, since that would not correspond to the given definition and would seriously limit the range of computations the machine can perform to those of a linear bounded automaton.
Alternative definitions[edit]
Definitions in literature sometimes differ slightly, to make arguments or proofs easier or clearer, but this is always done in such a way that the resulting machine has the same computational power. For example, changing the set to , where N ("None" or "No-operation") would allow the machine to stay on the same tape cell instead of moving left or right, does not increase the machine's computational power.
The most common convention represents each "Turing instruction" in a "Turing table" by one of nine 5-tuples, per the convention of Turing/Davis (Turing (1936) in Undecidable, p. 126-127 and Davis (2000) p. 152):
- (definition 1): (qi, Sj, Sk/E/N, L/R/N, qm)
- ( current state qi , symbol scanned Sj , print symbol Sk/erase E/none N , move_tape_one_square left L/right R/none N , new state qm )
Other authors (Minsky (1967) p. 119, Hopcroft and Ullman (1979) p. 158, Stone (1972) p. 9) adopt a different convention, with new state qm listed immediately after the scanned symbol Sj:
- (definition 2): (qi, Sj, qm, Sk/E/N, L/R/N)
- ( current state qi , symbol scanned Sj , new state qm , print symbol Sk/erase E/none N , move_tape_one_square left L/right R/none N )
For the remainder of this article "definition 1" (the Turing/Davis convention) will be used.
Current state | Scanned symbol | Print symbol | Move tape | Final (i.e. next) state | 5-tuples | |
---|---|---|---|---|---|---|
A | 0 | 1 | R | B | (A, 0, 1, R, B) | |
A | 1 | 1 | L | C | (A, 1, 1, L, C) | |
B | 0 | 1 | L | A | (B, 0, 1, L, A) | |
B | 1 | 1 | R | B | (B, 1, 1, R, B) | |
C | 0 | 1 | L | B | (C, 0, 1, L, B) | |
C | 1 | 1 | N | H | (C, 1, 1, N, H) |
In the following table, Turing's original model allowed only the first three lines that he called N1, N2, N3 (cf Turing in Undecidable, p. 126). He allowed for erasure of the "scanned square" by naming a 0th symbol S0 = "erase" or "blank", etc. However, he did not allow for non-printing, so every instruction-line includes "print symbol Sk" or "erase" (cf footnote 12 in Post (1947), Undecidable p. 300). The abbreviations are Turing's (Undecidable p. 119). Subsequent to Turing's original paper in 1936–1937, machine-models have allowed all nine possible types of five-tuples:
Current m-configuration (Turing state) | Tape symbol | Print-operation | Tape-motion | Final m-configuration (Turing state) | 5-tuple | 5-tuple comments | 4-tuple | |
---|---|---|---|---|---|---|---|---|
N1 | qi | Sj | Print(Sk) | Left L | qm | (qi, Sj, Sk, L, qm) | "blank" = S0, 1=S1, etc. | |
N2 | qi | Sj | Print(Sk) | Right R | qm | (qi, Sj, Sk, R, qm) | "blank" = S0, 1=S1, etc. | |
N3 | qi | Sj | Print(Sk) | None N | qm | (qi, Sj, Sk, N, qm) | "blank" = S0, 1=S1, etc. | (qi, Sj, Sk, qm) |
4 | qi | Sj | None N | Left L | qm | (qi, Sj, N, L, qm) | (qi, Sj, L, qm) | |
5 | qi | Sj | None N | Right R | qm | (qi, Sj, N, R, qm) | (qi, Sj, R, qm) | |
6 | qi | Sj | None N | None N | qm | (qi, Sj, N, N, qm) | Direct "jump" | (qi, Sj, N, qm) |
7 | qi | Sj | Erase | Left L | qm | (qi, Sj, E, L, qm) | ||
8 | qi | Sj | Erase | Right R | qm | (qi, Sj, E, R, qm) | ||
9 | qi | Sj | Erase | None N | qm | (qi, Sj, E, N, qm) | (qi, Sj, E, qm) |
Any Turing table (list of instructions) can be constructed from the above nine 5-tuples. For technical reasons, the three non-printing or "N" instructions (4, 5, 6) can usually be dispensed with. For examples see Turing machine examples.
Less frequently the use of 4-tuples are encountered: these represent a further atomization of the Turing instructions (cf Post (1947), Boolos & Jeffrey (1974, 1999), Davis-Sigal-Weyuker (1994)); also see more at Post–Turing machine.
The "state"[edit]
The word "state" used in context of Turing machines can be a source of confusion, as it can mean two things. Most commentators after Turing have used "state" to mean the name/designator of the current instruction to be performed—i.e. the contents of the state register. But Turing (1936) made a strong distinction between a record of what he called the machine's "m-configuration", (its internal state) and the machine's (or person's) "state of progress" through the computation - the current state of the total system. What Turing called "the state formula" includes both the current instruction and all the symbols on the tape:
Earlier in his paper Turing carried this even further: he gives an example where he placed a symbol of the current "m-configuration"—the instruction's label—beneath the scanned square, together with all the symbols on the tape (Undecidable, p. 121); this he calls "the complete configuration" (Undecidable, p. 118). To print the "complete configuration" on one line, he places the state-label/m-configuration to the left of the scanned symbol.
A variant of this is seen in Kleene (1952) where Kleene shows how to write the Gödel number of a machine's "situation": he places the "m-configuration" symbol q4 over the scanned square in roughly the center of the 6 non-blank squares on the tape (see the Turing-tape figure in this article) and puts it to the right of the scanned square. But Kleene refers to "q4" itself as "the machine state" (Kleene, p. 374-375). Hopcroft and Ullman call this composite the "instantaneous description" and follow the Turing convention of putting the "current state" (instruction-label, m-configuration) to the left of the scanned symbol (p. 149).
Example: total state of 3-state 2-symbol busy beaver after 3 "moves" (taken from example "run" in the figure below):
-
- 1A1
This means: after three moves the tape has ... 000110000 ... on it, the head is scanning the right-most 1, and the state is A. Blanks (in this case represented by "0"s) can be part of the total state as shown here: B01; the tape has a single 1 on it, but the head is scanning the 0 ("blank") to its left and the state is B.
"State" in the context of Turing machines should be clarified as to which is being described: (i) the current instruction, or (ii) the list of symbols on the tape together with the current instruction, or (iii) the list of symbols on the tape together with the current instruction placed to the left of the scanned symbol or to the right of the scanned symbol.
Turing's biographer Andrew Hodges (1983: 107) has noted and discussed this confusion.
Turing machine "state" diagrams[edit]
Tape symbol | Current state A | Current state B | Current state C | ||||||
---|---|---|---|---|---|---|---|---|---|
Write symbol | Move tape | Next state | Write symbol | Move tape | Next state | Write symbol | Move tape | Next state | |
0 | P | R | B | P | L | A | P | L | B |
1 | P | L | C | P | R | B | P | R | HALT |
To the right: the above TABLE as expressed as a "state transition" diagram.
Usually large TABLES are better left as tables (Booth, p. 74). They are more readily simulated by computer in tabular form (Booth, p. 74). However, certain concepts—e.g. machines with "reset" states and machines with repeating patterns (cf Hill and Peterson p. 244ff)—can be more readily seen when viewed as a drawing.
Whether a drawing represents an improvement on its TABLE must be decided by the reader for the particular context. See Finite state machine for more.
The reader should again be cautioned that such diagrams represent a snapshot of their TABLE frozen in time, not the course ("trajectory") of a computation through time and/or space. While every time the busy beaver machine "runs" it will always follow the same state-trajectory, this is not true for the "copy" machine that can be provided with variable input "parameters".
The diagram "Progress of the computation" shows the 3-state busy beaver's "state" (instruction) progress through its computation from start to finish. On the far right is the Turing "complete configuration" (Kleene "situation", Hopcroft–Ullman "instantaneous description") at each step. If the machine were to be stopped and cleared to blank both the "state register" and entire tape, these "configurations" could be used to rekindle a computation anywhere in its progress (cf Turing (1936) Undecidable pp. 139–140).
Models equivalent to the Turing machine model[edit]
Many machines that might be thought to have more computational capability than a simple universal Turing machine can be shown to have no more power (Hopcroft and Ullman p. 159, cf Minsky (1967)). They might compute faster, perhaps, or use less memory, or their instruction set might be smaller, but they cannot compute more powerfully (i.e. more mathematical functions). (Recall that the Church–Turing thesis hypothesizes this to be true for any kind of machine: that anything that can be "computed" can be computed by some Turing machine.)
A Turing machine is equivalent to a pushdown automaton that has been made more flexible and concise by relaxing the last-in-first-out requirement of its stack.
At the other extreme, some very simple models turn out to be Turing-equivalent, i.e. to have the same computational power as the Turing machine model.
Common equivalent models are the multi-tape Turing machine, multi-track Turing machine, machines with input and output, and the non-deterministic Turing machine (NDTM) as opposed to the deterministic Turing machine (DTM) for which the action table has at most one entry for each combination of symbol and state.
Read-only, right-moving Turing machines are equivalent to NDFAs (as well as DFAs by conversion using the NDFA to DFA conversion algorithm).
For practical and didactical intentions the equivalent register machine can be used as a usual assembly programming language.
Choice c-machines, Oracle o-machines[edit]
Early in his paper (1936) Turing makes a distinction between an "automatic machine"—its "motion ... completely determined by the configuration" and a "choice machine":
Turing (1936) does not elaborate further except in a footnote in which he describes how to use an a-machine to "find all the provable formulae of the [Hilbert] calculus" rather than use a choice machine. He "suppose[s] that the choices are always between two possibilities 0 and 1. Each proof will then be determined by a sequence of choices i1, i2, ..., in(i1 = 0 or 1, i2 = 0 or 1, ..., in = 0 or 1), and hence the number 2n + i12n-1 + i22n-2 + ... +in completely determines the proof. The automatic machine carries out successively proof 1, proof 2, proof 3, ..." (Footnote ‡, Undecidable, p. 138)
This is indeed the technique by which a deterministic (i.e. a-) Turing machine can be used to mimic the action of a nondeterministic Turing machine; Turing solved the matter in a footnote and appears to dismiss it from further consideration.
An oracle machine or o-machine is a Turing a-machine that pauses its computation at state "o" while, to complete its calculation, it "awaits the decision" of "the oracle"—an unspecified entity "apart from saying that it cannot be a machine" (Turing (1939), Undecidable p. 166–168). The concept is now actively used by mathematicians.
Universal Turing machines[edit]
Main article: Universal Turing machine
As Turing wrote in Undecidable, p. 128 (italics added):
This finding is now taken for granted, but at the time (1936) it was considered astonishing. The model of computation that Turing called his "universal machine"—"U" for short—is considered by some (cf Davis (2000)) to have been the fundamental theoretical breakthrough that led to the notion of the stored-program computer.
In terms of computational complexity, a multi-tape universal Turing machine need only be slower by logarithmic factor compared to the machines it simulates. This result was obtained in 1966 by F. C. Hennie and R. E. Stearns. (Arora and Barak, 2009, theorem 1.9)
Comparison with real machines[edit]
It is often said that Turing machines, unlike simpler automata, are as powerful as real machines, and are able to execute any operation that a real program can. What is neglected in this statement is that, because a real machine can only have a finite number ofconfigurations, this "real machine" is really nothing but a linear bounded automaton. On the other hand, Turing machines are equivalent to machines that have an unlimited amount of storage space for their computations. However, Turing machines are not intended to model computers, but rather they are intended to model computation itself. Historically, computers, which compute only on their (fixed) internal storage, were developed only later.
There are a number of ways to explain why Turing machines are useful models of real computers:
- Anything a real computer can compute, a Turing machine can also compute. For example: "A Turing machine can simulate any type of subroutine found in programming languages, including recursive procedures and any of the known parameter-passing mechanisms" (Hopcroft and Ullman p. 157). A large enough FSA can also model any real computer, disregarding IO. Thus, a statement about the limitations of Turing machines will also apply to real computers.
- The difference lies only with the ability of a Turing machine to manipulate an unbounded amount of data. However, given a finite amount of time, a Turing machine (like a real machine) can only manipulate a finite amount of data.
- Like a Turing machine, a real machine can have its storage space enlarged as needed, by acquiring more disks or other storage media. If the supply of these runs short, the Turing machine may become less useful as a model. But the fact is that neither Turing machines nor real machines need astronomical amounts of storage space in order to perform useful computation. The processing time required is usually much more of a problem.
- Descriptions of real machine programs using simpler abstract models are often much more complex than descriptions using Turing machines. For example, a Turing machine describing an algorithm may have a few hundred states, while the equivalent deterministic finite automaton (DFA) on a given real machine has quadrillions. This makes the DFA representation infeasible to analyze.
- Turing machines describe algorithms independent of how much memory they use. There is a limit to the memory possessed by any current machine, but this limit can rise arbitrarily in time. Turing machines allow us to make statements about algorithms which will (theoretically) hold forever, regardless of advances in conventional computing machine architecture.
- Turing machines simplify the statement of algorithms. Algorithms running on Turing-equivalent abstract machines are usually more general than their counterparts running on real machines, because they have arbitrary-precision data types available and never have to deal with unexpected conditions (including, but not limited to, running out of memory).
One way in which Turing machines are a poor model for programs is that many real programs, such as operating systems and word processors, are written to receive unbounded input over time, and therefore do not halt. Turing machines do not model such ongoing computation well (but can still model portions of it, such as individual procedures).
Limitations of Turing machines[edit]
Computational complexity theory[edit]
Further information: Computational complexity theory
A limitation of Turing machines is that they do not model the strengths of a particular arrangement well. For instance, modern stored-program computers are actually instances of a more specific form of abstract machine known as the random access stored program machine or RASP machine model. Like the Universal Turing machine the RASP stores its "program" in "memory" external to its finite-state machine's "instructions". Unlike the universal Turing machine, the RASP has an infinite number of distinguishable, numbered but unbounded "registers"—memory "cells" that can contain any integer (cf. Elgot and Robinson (1964), Hartmanis (1971), and in particular Cook-Rechow (1973); references atrandom access machine). The RASP's finite-state machine is equipped with the capability for indirect addressing (e.g. the contents of one register can be used as an address to specify another register); thus the RASP's "program" can address any register in the register-sequence. The upshot of this distinction is that there are computational optimizations that can be performed based on the memory indices, which are not possible in a general Turing machine; thus when Turing machines are used as the basis for bounding running times, a 'false lower bound' can be proven on certain algorithms' running times (due to the false simplifying assumption of a Turing machine). An example of this is binary search, an algorithm that can be shown to perform more quickly when using the RASP model of computation rather than the Turing machine model.
Concurrency[edit]
This section does not cite any sources. (April 2015) |
Another limitation of Turing machines is that they do not model concurrency well. For example, there is a bound on the size of integer that can be computed by an always-halting nondeterministic Turing machine starting on a blank tape. (See article on unbounded nondeterminism.) By contrast, there are always-halting concurrent systems with no inputs that can compute an integer of unbounded size. (A process can be created with local storage that is initialized with a count of 0 that concurrently sends itself both a stop and a go message. When it receives a go message, it increments its count by 1 and sends itself a go message. When it receives a stop message, it stops with an unbounded number in its local storage.)
History[edit]
See also: Algorithm and Church–Turing thesis
They were described in 1936 by Alan Turing.
Historical background: computational machinery[edit]
Robin Gandy (1919–1995)—a student of Alan Turing (1912–1954) and his lifelong friend—traces the lineage of the notion of "calculating machine" back to Babbage (circa 1834) and actually proposes "Babbage's Thesis":
Gandy's analysis of Babbage's Analytical Engine describes the following five operations (cf p. 52–53):
- The arithmetic functions +, −, × where − indicates "proper" subtraction x − y = 0 if y ≥ x
- Any sequence of operations is an operation
- Iteration of an operation (repeating n times an operation P)
- Conditional iteration (repeating n times an operation P conditional on the "success" of test T)
- Conditional transfer (i.e. conditional "goto").
Gandy states that "the functions which can be calculated by (1), (2), and (4) are precisely those which are Turing computable." (p. 53). He cites other proposals for "universal calculating machines" including those of Percy Ludgate (1909), Leonardo Torres y Quevedo (1914), Maurice d'Ocagne (1922), Louis Couffignal (1933), Vannevar Bush (1936),Howard Aiken (1937). However:
The Entscheidungsproblem (the "decision problem"): Hilbert's tenth question of 1900[edit]
With regards to Hilbert's problems posed by the famous mathematician David Hilbert in 1900, an aspect of problem #10 had been floating about for almost 30 years before it was framed precisely. Hilbert's original expression for #10 is as follows:
By 1922, this notion of "Entscheidungsproblem" had developed a bit, and H. Behmann stated that
By the 1928 international congress of mathematicians, Hilbert "made his questions quite precise. First, was mathematics complete ... Second, was mathematics consistent ... And thirdly, was mathematics decidable?" (Hodges p. 91, Hawking p. 1121). The first two questions were answered in 1930 by Kurt Gödel at the very same meeting where Hilbert delivered his retirement speech (much to the chagrin of Hilbert); the third—the Entscheidungsproblem—had to wait until the mid-1930s.
The problem was that an answer first required a precise definition of "definite general applicable prescription", which Princeton professor Alonzo Church would come to call "effective calculability", and in 1928 no such definition existed. But over the next 6–7 years Emil Post developed his definition of a worker moving from room to room writing and erasing marks per a list of instructions (Post 1936), as did Church and his two students Stephen Kleene and J. B. Rosser by use of Church's lambda-calculus and Gödel'srecursion theory (1934). Church's paper (published 15 April 1936) showed that the Entscheidungsproblem was indeed "undecidable" and beat Turing to the punch by almost a year (Turing's paper submitted 28 May 1936, published January 1937). In the meantime, Emil Post submitted a brief paper in the fall of 1936, so Turing at least had priority over Post. While Church refereed Turing's paper, Turing had time to study Church's paper and add an Appendix where he sketched a proof that Church's lambda-calculus and his machines would compute the same functions.
And Post had only proposed a definition of calculability and criticized Church's "definition", but had proved nothing.
Alan Turing's a- (automatic-)machine[edit]
In the spring of 1935, Turing as a young Master's student at King's College Cambridge, UK, took on the challenge; he had been stimulated by the lectures of the logician M. H. A. Newman "and learned from them of Gödel's work and the Entscheidungsproblem ... Newman used the word 'mechanical' ... In his obituary of Turing 1955 Newman writes:
Gandy states that:
While Gandy believed that Newman's statement above is "misleading", this opinion is not shared by all. Turing had a lifelong interest in machines: "Alan had dreamt of inventing typewriters as a boy; [his mother] Mrs. Turing had a typewriter; and he could well have begun by asking himself what was meant by calling a typewriter 'mechanical'" (Hodges p. 96). While at Princeton pursuing his PhD, Turing built a Boolean-logic multiplier (see below). His PhD thesis, titled "Systems of Logic Based on Ordinals", contains the following definition of "a computable function":
When Turing returned to the UK he ultimately became jointly responsible for breaking the German secret codes created by encryption machines called "The Enigma"; he also became involved in the design of the ACE (Automatic Computing Engine), "[Turing's] ACE proposal was effectively self-contained, and its roots lay not in the EDVAC [the USA's initiative], but in his own universal machine" (Hodges p. 318). Arguments still continue concerning the origin and nature of what has been named by Kleene (1952) Turing's Thesis. But what Turing did prove with his computational-machine model appears in his paper On Computable Numbers, With an Application to the Entscheidungsproblem(1937):
Turing's example (his second proof): If one is to ask for a general procedure to tell us: "Does this machine ever print 0", the question is "undecidable".
1937–1970: The "digital computer", the birth of "computer science"[edit]
In 1937, while at Princeton working on his PhD thesis, Turing built a digital (Boolean-logic) multiplier from scratch, making his own electromechanical relays (Hodges p. 138). "Alan's task was to embody the logical design of a Turing machine in a network of relay-operated switches ..." (Hodges p. 138). While Turing might have been just initially curious and experimenting, quite-earnest work in the same direction was going in Germany (Konrad Zuse (1938)), and in the United States (Howard Aiken) and George Stibitz (1937); the fruits of their labors were used by the Axis and Allied military in World War II (cf Hodges p. 298–299). In the early to mid-1950s Hao Wang and Marvin Minsky reduced the Turing machine to a simpler form (a precursor to the Post-Turing machine of Martin Davis); simultaneously European researchers were reducing the new-fangled electronic computer to a computer-like theoretical object equivalent to what was now being called a "Turing machine". In the late 1950s and early 1960s, the coincidentally parallel developments of Melzak and Lambek (1961), Minsky (1961), and Shepherdson and Sturgis (1961) carried the European work further and reduced the Turing machine to a more friendly, computer-like abstract model called the counter machine; Elgot and Robinson (1964), Hartmanis (1971), Cook and Reckhow (1973) carried this work even further with the register machine and random access machine models—but basically all are just multi-tape Turing machines with an arithmetic-like instruction set.
1970–present: the Turing machine as a model of computation[edit]
Today, the counter, register and random-access machines and their sire the Turing machine continue to be the models of choice for theorists investigating questions in the theory of computation. In particular, computational complexity theory makes use of the Turing machine:
Kantorovitz(2005) Sweden was the first to show the most simple obvious representation of Turing Machines published academically which unifies Turing Machines with mathematical analysis and analog computers.
No comments:
Post a Comment